Polymer electrolyte membrane with high selectivity ratio for direct methanol fuel cells: A preliminary study based on blends of partially sulfonated polymers polyaniline and PVdF-co-HFP
Kingshuk Dutta,
Suparna Das,
Piyush Kumar and
Patit Paban Kundu
Applied Energy, 2014, vol. 118, issue C, 183-191
Abstract:
Poly(vinylidene fluoride-co-hexafluoro propylene) is a prospective material for the fabrication of polymer electrolyte membranes (PEMs) for direct methanol fuel cells, primarily due to its low methanol permeability, high mechanical integrity and significantly low cost compared to conventionally used Nafion. However, low proton conductivity has hindered its independent use; therefore, most studies on this prospective copolymer have been done by using it in conjunction with Nafion. Nevertheless, partial sulfonation of this copolymer has resulted in increased proton conductivity while maintaining its low methanol permeability. Therefore, it seems appropriate that blending this sulfonated copolymer with a second low-cost component, which can complement its low conductive nature, can result in PEMs with high selectivity. Use of partially sulfonated polyaniline, as the second component, produced selectivity ratio of 5.85×105Sscm−3, ion-exchange capacity of 0.71meqg−1, and current density of 90.5mAcm−2 at +0.2V and 60°C and corresponding maximum power density of 18.5mWcm−2.
Keywords: Direct methanol fuel cell; Polymer electrolyte membrane; Partial sulfonation; Sufonated polyaniline; Sulfonated poly(vinylidene fluoride-co-hexafluoro propylene) (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913010283
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:118:y:2014:i:c:p:183-191
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2013.12.029
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().