Influence of exhaust gas heating and L/D ratios on the discharge efficiencies for an activated carbon natural gas storage system
P.K. Sahoo,
B.P. Prajwal,
Siva Kalyan Dasetty,
M. John,
B.L. Newalkar,
N.V. Choudary and
K.G. Ayappa
Applied Energy, 2014, vol. 119, issue C, 190-203
Abstract:
A transient 2D axi-symmetric and lumped parameter (LP) model with constant outflow conditions have been developed to study the discharge capacity of an activated carbon bed. The predicted discharge times and variations in bed pressure and temperature are in good agreement with experimental results obtained from a 1.82 l adsorbed natural gas (ANG) storage system. Under ambient air conditions, a maximum temperature drop of 29.5K and 45.5K are predicted at the bed center for discharge rates of 1.0lmin-1 and 5.0lmin-1 respectively. The corresponding discharge efficiencies are 77% and 71.5% respectively with discharge efficiencies improving with decreasing outflow rates. Increasing the L/D ratio from 1.9 to 7.8 had only a marginal increase in the discharge efficiency. Forced convection (exhaust gas) heating had a significant effect on the discharge efficiency, leading to efficiencies as high as 92.8% at a discharge of 1.0lmin-1 and 88.7% at 5lmin-1. Our study shows that the LP model can be reliably used to obtain discharge times due to the uniform pressure distributions in the bed. Temperature predictions with the LP model were more accurate at ambient conditions and higher discharge rates, due to greater uniformity in bed temperatures. For the low thermal conductivity carbon porous beds, our study shows that exhaust gas heating can be used as an effective and convenient strategy to improve the discharge characteristics and performance of an ANG system.
Keywords: Adsorbed natural gas; Discharge efficiency; 2D and lumped model; Exhaust gas (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913010660
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:119:y:2014:i:c:p:190-203
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2013.12.057
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().