Economics at your fingertips  

State-of-charge estimation and uncertainty for lithium-ion battery strings

Cyril Truchot, Matthieu Dubarry and Bor Yann Liaw

Applied Energy, 2014, vol. 119, issue C, 218-227

Abstract: The state-of-charge (SOC) estimation is of extreme importance for the reliability and safety of battery operation. How to estimate SOC and, to some degree, the SOC convention itself, is still a subject of great interest. Here a viable SOC convention valid for single cells and multi-cell strings is proposed and validated. Using a 3S1P string as an illustration in this work, the direct inference from a correct open circuit voltage versus SOC (OCV=f(SOC)) correspondence based on the proposed SOC convention is the best method for accurate SOC estimation among several possible approaches for strings. The thermodynamic aspect on this SOC convention is explained. Uncertainties in actual applications are also discussed. The understanding on this accurate SOC estimation approach shall facilitate reliable battery control and management.

Keywords: State-of-charge (SOC) estimation; Battery strings; State function; Uncertainty; Cell variability; BMS (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations View citations in EconPapers (11) Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Ordering information: This journal article can be ordered from
http://www.elsevier. ... 405891/bibliographic

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Series data maintained by Dana Niculescu ().

Page updated 2017-09-29
Handle: RePEc:eee:appene:v:119:y:2014:i:c:p:218-227