Direct transesterification of wet Cryptococcus curvatus cells to biodiesel through use of microwave irradiation
Yi Cui and
Yanna Liang
Applied Energy, 2014, vol. 119, issue C, 438-444
Abstract:
Cryptococcus curvatus is a highly promising oleaginous yeast strain that can accumulate intracellular lipids when grown on renewable carbon sources. In order to convert yeast lipids to biodiesel in a simple but cost-effective way, we aim to react whole yeast cells with methanol to produce biodiesel eliminating the step of drying and lipid extraction while adopting microwave energy for heating and disrupting cell walls. Through use of a screening test followed by response surface methodology, optimal parameters leading to the highest yield of crude biodiesel and FAMEs were identified. Under optimal conditions of reaction time (2min), methanol/biomass ratio (50/1, v/m), stirring speed (966rpm), KOH concentration (5%), and water content (80%), the yield of crude biodiesel (% of total lipids) was 56.1% after the first round reaction. A second round reaction using the residual yeast cells increased the total yield to 92%. Among the crude biodiesel, 63.88% was FAMEs as revealed by GC analysis. Results from this study indicated that it is feasible to produce biodiesel from wet microbial biomass directly without the steps of drying and lipid extraction. With the assistance of microwave, this process can be accomplished in minutes with good process efficiency.
Keywords: Cryptococcus curvatus; Wet yeast biomass; Direct transesterification; Biodiesel; FAMEs (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191400035X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:119:y:2014:i:c:p:438-444
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.01.016
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().