RO-PRO desalination: An integrated low-energy approach to seawater desalination
Jeri L. Prante,
Jeffrey A. Ruskowitz,
Amy E. Childress and
Andrea Achilli
Applied Energy, 2014, vol. 120, issue C, 104-114
Abstract:
Although reverse osmosis (RO) is currently the most energy efficient desalination technology, it still requires a great deal of energy to create the high pressures necessary to desalinate seawater. An opposite process of RO, called pressure retarded osmosis (PRO), utilizes the salinity gradient between a relatively fresh impaired water source and seawater to produce pressure and hence, energy. In this paper, PRO is evaluated in conjunction with RO, in a system called RO-PRO desalination, to reduce the energy requirement of seawater RO desalination. RO-PRO specific energy consumption was modeled using RO conditions at the thermodynamic restriction and a newly developed module-based PRO model. Using a well-characterized cellulose triacetate (CTA) membrane, the minimum net specific energy consumption of the system was found to be approximately 40% lower than state-of-the-art seawater RO. A sensitivity analysis was performed to determine the effects of membrane characteristics on the specific energy production of the PRO process in the RO-PRO system. The sensitivity analysis showed that the minimum specific energy consumption using virtual membranes is approximately 1.0kWh per m3 of RO permeate at 50% RO recovery and that a maximum power density of approximately 10W/m2 could be achieved.
Keywords: Pressure retarded osmosis; Reverse osmosis; Salinity gradient; Desalination (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (34)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914000324
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:120:y:2014:i:c:p:104-114
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.01.013
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().