EconPapers    
Economics at your fingertips  
 

Effective thermal conductivity for melting in PCM encapsulated in a sphere

N.A.M. Amin, F. Bruno and M. Belusko

Applied Energy, 2014, vol. 122, issue C, 280-287

Abstract: Heat transfer in phase change materials (PCMs) contained in spherical encapsulations can be modelled more simply if an effective thermal conductivity can be determined to represent the natural convection occurring within the PCMs. Previous research has shown that natural convection in PCM can be characterised by a constant effective thermal conductivity during the melting process. However, this research did not consider the impact of the increased buoyancy forces with increased temperature difference between the heat transfer fluid flowing around the encapsulation and the PCM. An experimental study was conducted on the heat transfer through a single sphere subject to varying temperature differences. A computational fluid dynamics (CFD) model which ignored buoyancy of the PCM in a sphere was developed. Using this CFD model, the effective thermal conductivity of the liquid portion of the PCM was determined by correlating data from the model against experimental data at various temperature differences with water as the PCM. A suitable relationship for the effective thermal conductivity was developed as a function of the Rayleigh number. This empirical correlation applies to the geometry and PCM used in this study. The study demonstrates the applicability of determining effective thermal conductivity relationships to represent natural convection in PCM thermal storage systems. This correlation can be directly applied to numerical models of PCM storage systems with spheres.

Keywords: Phase change material; Thermal energy storage; Computational fluid dynamics; Effective thermal conductivity (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914001020
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:122:y:2014:i:c:p:280-287

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2014.01.073

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:122:y:2014:i:c:p:280-287