Theoretical study on a novel ammonia–water cogeneration system with adjustable cooling to power ratios
Zeting Yu,
Jitian Han,
Hai Liu and
Hongxia Zhao
Applied Energy, 2014, vol. 122, issue C, 53-61
Abstract:
A novel ammonia–water cogeneration system with adjustable cooling to power ratios is proposed and investigated. In the combined system, a modified Kalina subcycle and an ammonia absorption cooling subcycle are interconnected by mixers, splitters, absorbers and heat exchangers. The proposed system can adjust its cooling to power ratios from the separate mode without splitting/mixing processes in the two subcycles to the combined operation modes which can produce different ratios of cooling and power. Simulation analysis is conducted to investigate the effects of operation parameter on system performance. The results indicate that the combined system efficiency can reach the maximum values of 37.79% as SR1 (split ratio 1) is equal to 1. Compared with the separate system, the combined efficiency and COP values of the proposed system can increase by 6.6% and 100% with the same heat input, respectively. In addition, the cooling to power ratios of the proposed system can be adjusted in the range of 1.8–3.6 under the given operating conditions.
Keywords: Cogeneration; Ammonia–water mixtures; Absorption cooling subcycle; Kalina subcycle thermodynamic analysis; Adjustable cooling to power ratios (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914001299
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:122:y:2014:i:c:p:53-61
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.02.010
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().