Forecasting energy consumption of multi-family residential buildings using support vector regression: Investigating the impact of temporal and spatial monitoring granularity on performance accuracy
Rishee K. Jain,
Kevin M. Smith,
Patricia J. Culligan and
John E. Taylor
Applied Energy, 2014, vol. 123, issue C, 168-178
Abstract:
Buildings are the dominant source of energy consumption and environmental emissions in urban areas. Therefore, the ability to forecast and characterize building energy consumption is vital to implementing urban energy management and efficiency initiatives required to curb emissions. Advances in smart metering technology have enabled researchers to develop “sensor based” approaches to forecast building energy consumption that necessitate less input data than traditional methods. Sensor-based forecasting utilizes machine learning techniques to infer the complex relationships between consumption and influencing variables (e.g., weather, time of day, previous consumption). While sensor-based forecasting has been studied extensively for commercial buildings, there is a paucity of research applying this data-driven approach to the multi-family residential sector. In this paper, we build a sensor-based forecasting model using Support Vector Regression (SVR), a commonly used machine learning technique, and apply it to an empirical data-set from a multi-family residential building in New York City. We expand our study to examine the impact of temporal (i.e., daily, hourly, 10min intervals) and spatial (i.e., whole building, by floor, by unit) granularity have on the predictive power of our single-step model. Results indicate that sensor based forecasting models can be extended to multi-family residential buildings and that the optimal monitoring granularity occurs at the by floor level in hourly intervals. In addition to implications for the development of residential energy forecasting models, our results have practical significance for the deployment and installation of advanced smart metering devices. Ultimately, accurate and cost effective wide-scale energy prediction is a vital step towards next-generation energy efficiency initiatives, which will require not only consideration of the methods, but the scales for which data can be distilled into meaningful information.
Keywords: Forecasting; Machine learning; Monitoring; Prediction; Residential building; Support vector regression (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (137)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914002013
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:123:y:2014:i:c:p:168-178
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.02.057
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().