EconPapers    
Economics at your fingertips  
 

Implications of high renewable electricity penetration in the U.S. for water use, greenhouse gas emissions, land-use, and materials supply

Doug Arent, Jacquelyn Pless (), Trieu Mai, Ryan Wiser, Maureen Hand, Sam Baldwin, Garvin Heath, Jordan Macknick, Morgan Bazilian, Adam Schlosser and Paul Denholm

Applied Energy, 2014, vol. 123, issue C, 368-377

Abstract: Recent work found that renewable energy could supply 80% of electricity demand in the contiguous United States in 2050 at the hourly level. This paper explores some of the implications of achieving such high levels of renewable electricity for supply chains and the environment in scenarios with renewable supply up to such levels. Expanding the renewable electricity supply at this scale by 2050 implies annual capacity additions of roughly 20gigawatts per year (GW/year) over the next decade, rising to roughly 40GW/year from 2040 to 2050. Given total 2012 renewable electricity capacity additions of slightly more than 16 GW, this suggests moderate growth of the related supply chains, averaging overall roughly 4% annual growth to 2040. Transitioning to high renewable electricity supply would lead to significant reductions in greenhouse gas emissions and water use, with only modest land-use implications. While renewable energy expansion implies moderate growth of the renewable electricity supply chains, no insurmountable long-term constraints to renewable electricity technology manufacturing capacity or materials supply areidentified.

Keywords: Renewable energy; Supply chains; Greenhouse gas emissions; Water use; Land use; Critical materials (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (54)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913010210
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:123:y:2014:i:c:p:368-377

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2013.12.022

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:123:y:2014:i:c:p:368-377