Identifying critical materials for photovoltaics in the US: A multi-metric approach
Michele Goe and
Gabrielle Gaustad
Applied Energy, 2014, vol. 123, issue C, 387-396
Abstract:
There are increasing concerns that physical material constraints threaten energy security and the growth of emerging technologies. Traditional approaches to quantify material criticality utilize single-score metrics which are narrowly focused on physical scarcity and often lead to command-and-control policies. However, a broader definition of criticality that goes beyond physical scarcity to include sustainability metrics e.g. embodied energy, political instability, economic value can provide policymakers with a more comprehensive perspective of the complex and highly interconnected relationships between indicators. We use the case of solar photovoltaic materials to demonstrate the challenges and opportunities in critical materials policy and indicator choices. For silicon-based and thin-film photovoltaics in particular, Ge, Pt, As, In, Sn and Ag were found to be the most critical relative to the 17 materials studied. Multi-metric analysis for these materials reveals tradeoffs that suggest friction between sustainable economics, political stability of supply, and environmental quality objectives.
Keywords: Energy security; Supply risk; Thin-film photovoltaics; Indium; Gallium; Tellurium (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (37)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914000440
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:123:y:2014:i:c:p:387-396
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.01.025
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().