Robust on-line fault detection diagnosis for HVAC components based on nonlinear state estimation techniques
Marco Bonvini,
Michael D. Sohn,
Jessica Granderson,
Michael Wetter and
Mary Ann Piette
Applied Energy, 2014, vol. 124, issue C, 156-166
Abstract:
This work presents a robust and computationally efficient algorithm for both whole-building and component-level energy fault detection and diagnosis (FDD). The algorithm is able to provide reliable estimation of multiple and simultaneous fault conditions, even in the presence of noisy and sometimes erroneous sensor data, and to provide uncertainty estimation. The algorithm can be used to provide such outputs as the probability of a fault, the likely cause(s), and the expected consequences of the fault(s) on energy use. The approach is based on an advanced Bayesian nonlinear state estimation technique called Unscented Kalman Filtering, but with our addition of a back-smoothing method that provides fast and robust FDD for common building use cases. The approach is presented and demonstrated for detecting energy and hydraulic faults in a chiller plant. The model of the chiller plant is a subsystem of an actual chiller plant, calibrated to real data. The algorithm can detect common faults, such as (1) energy faults (e.g., the chiller is not working properly, or far from its nominal condition), (2) functional faults caused by issues in the compressor and (3) occlusions in the valves that may reduce the water flow rate through the condenser and evaporator water loop. It is also shown that estimates of uncertainty are consistent with the error in the synthetic data, and can be updated as new data stream in from sensors.
Keywords: Fault detection and diagnosis; Bayesian updating; Chiller plant faults; Unscented Kalman filtering (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914002311
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:124:y:2014:i:c:p:156-166
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.03.009
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().