EconPapers    
Economics at your fingertips  
 

A physics-based time-varying transport delay oxygen concentration model for dual-loop exhaust gas recirculation (EGR) engine air-paths

Xiangrui Zeng and Junmin Wang

Applied Energy, 2014, vol. 125, issue C, 300-307

Abstract: Dual-loop exhaust gas recirculation (EGR) systems can provide control authorities to adjust the engine in-cylinder gas conditions. The significant transport delays in the EGR air-paths can affect the performance of some simple oxygen concentration dynamic models under transient operating conditions. In this paper, a physics-based dual-loop EGR air-path oxygen concentration model considering the time-varying transport delays is developed and a method to calculate the delay time based on the continuity of fluid velocity is presented. Simulation studies with a high-fidelity, one-dimensional, computational GT-Power engine model and experimental validations on a Diesel engine test bench show that the developed model performs well under all tested operating conditions while the comparison models cannot capture the oxygen concentration dynamics under some transient operating conditions.

Keywords: Dual-loop EGR; Oxygen concentration model; Transport delays (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191400316X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:125:y:2014:i:c:p:300-307

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2014.03.076

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:125:y:2014:i:c:p:300-307