Method for estimating capacity and predicting remaining useful life of lithium-ion battery
Chao Hu,
Gaurav Jain,
Prabhakar Tamirisa and
Tom Gorka
Applied Energy, 2014, vol. 126, issue C, 182-189
Abstract:
Reliability of lithium-ion (Li-ion) rechargeable batteries used in implantable medical devices has been recognized as of high importance from a broad range of stakeholders, including medical device manufacturers, regulatory agencies, physicians, and patients. To ensure Li-ion batteries in these devices operate reliably, it is important to be able to assess the capacity of Li-ion battery and predict the remaining useful life (RUL) throughout the whole life-time. This paper presents an integrated method for the capacity estimation and RUL prediction of Li-ion battery used in implantable medical devices. A state projection scheme from the author’s previous study is used for the capacity estimation. Then, based on the capacity estimates, the Gauss–Hermite particle filter technique is used to project the capacity fade to the end-of-service (EOS) value (or the failure limit) for the RUL prediction. Results of 10years’ continuous cycling test on Li-ion prismatic cells in the lab suggest that the proposed method achieves good accuracy in the capacity estimation and captures the uncertainty in the RUL prediction. Post-explant weekly cycling data obtained from field cells with 4–7 implant years further verify the effectiveness of the proposed method in the capacity estimation.
Keywords: Capacity; Health monitoring; Prognostics; Remaining useful life; Lithium-ion battery (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (35)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914003262
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:126:y:2014:i:c:p:182-189
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.03.086
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().