EconPapers    
Economics at your fingertips  
 

Design of a latent thermal energy storage system with embedded heat pipes

K. Nithyanandam and R. Pitchumani

Applied Energy, 2014, vol. 126, issue C, 266-280

Abstract: Thermal energy storage plays an important role in extending the operation of a concentrating solar power (CSP) plant to times when sufficient solar energy is unavailable for generation of electricity. Extending the CSP plant operation increases its capacity factor and can lead to reduction in the levelized cost of electricity equivalent to that of fossil-fueled power plants. In view of this, latent thermal energy storage (LTES) system embedded with gravity-assisted heat pipes is considered in the present study. Transient numerical simulations are presented and the influence of the design and operating parameters on the dynamic charge and discharge performance of the system is analyzed to identify operating windows that satisfy the U.S. Department of Energy SunShot Initiative targets, which include, storage cost less than $15/kWht, round-trip exergetic efficiency greater than 95% and charge time less than 6h for a minimum discharge period of 6h. Overall, this study illustrates a methodology for design and optimization of LTES with embedded gravity assisted heat pipes (HP-TES) for a CSP plant operation.

Keywords: Concentrating solar power; Thermal energy storage; Heat pipes; System design; System optimization; Computational modeling (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (29)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914002554
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:126:y:2014:i:c:p:266-280

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2014.03.025

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:126:y:2014:i:c:p:266-280