Analysis of daily solar power prediction with data-driven approaches
Huan Long,
Zijun Zhang and
Yan Su
Applied Energy, 2014, vol. 126, issue C, 29-37
Abstract:
Daily solar power prediction using data-driven approaches is studied. Four famous data-driven approaches, the Artificial Neural Network (ANN), the Support Vector Machine (SVM), the k-nearest neighbor (kNN), and the multivariate linear regression (MLR), are applied to develop the prediction models. The persistent model is considered as a baseline for evaluating the effectiveness of data-driven approaches. A procedure of selecting input parameters for solar power prediction models is addressed. Two modeling scenarios, including and excluding meteorological parameters as inputs, are assessed in the model development. A comparative analysis of the data-driven algorithms is conducted. The capability of data-driven models in multi-step ahead prediction is examined. The computational results indicate that none of the algorithms can outperform others in all considered prediction scenarios.
Keywords: Solar power prediction; Time-series model; Data mining; Artificial Neural Network (ANN); Support Vector Machine (SVM) (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (29)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914003249
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:126:y:2014:i:c:p:29-37
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.03.084
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().