EconPapers    
Economics at your fingertips  
 

A novel thermomechanical energy conversion cycle

Ian M. McKinley, Felix Y. Lee and Laurent Pilon

Applied Energy, 2014, vol. 126, issue C, 78-89

Abstract: This paper presents a new power cycle for direct conversion of thermomechanical energy into electrical energy performed on pyroelectric materials. It consists sequentially of (i) an isothermal electric poling process performed under zero stress followed by (ii) a combined uniaxial compressive stress and heating process, (iii) an isothermal electric de-poling process under uniaxial stress, and finally (iv) the removal of compressive stress during a cooling process. The new cycle was demonstrated experimentally on [001]-poled PMN-28PT single crystals. The maximum power and energy densities obtained were 41W/L and 41J/L/cycle respectively for cold and hot source temperatures of 22 and 130°C, electric field between 0.2 and 0.95MV/m, and with uniaxial load of 35.56MPa at frequency of 1Hz. The performance and constraints on the operating conditions of the new cycle were compared with those of the Olsen cycle. The new cycle was able to generate power at temperatures below those of the Olsen cycle. In addition, the new power cycle can adapt to changing thermal and mechanical conditions.

Keywords: Pyroelectric materials; Direct energy conversion; Waste heat harvesting; Ferroelectric materials; Olsen cycle; Thermomechanical energy (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914003092
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:126:y:2014:i:c:p:78-89

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2014.03.069

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:126:y:2014:i:c:p:78-89