Optimisation of turbine-induced damping for an OWC wave energy converter using a RANS–VOF numerical model
I. López,
B. Pereiras,
F. Castro and
G. Iglesias
Applied Energy, 2014, vol. 127, issue C, 105-114
Abstract:
The performance of an oscillating water column (OWC) wave energy converter depends on many factors, among which the incident wave conditions, the tidal level or the coupling between the chamber and the air turbine. In this work a 2D numerical model based on the RANS equations and the VOF surface capturing scheme (RANS–VOF) is implemented in order to study the optimum turbine-chamber coupling for a given OWC. The model represents a numerical wave flume where the OWC is tested under regular and irregular waves and for different damping coefficients, i.e., turbines of different characteristics. First, the numerical model is validated under regular and irregular waves using results from physical model tests. Excellent agreement is obtained between both models, physical and numerical. After the validation, an extensive campaign of computational tests is carried out, studying the performance of the OWC under nine different damping coefficients. The model developed allows, first, to quantify the relevance of the damping coefficient and wave conditions on the performance of an OWC chamber; and second, to define the damping condition which maximizes that performance, determining the characteristics that a turbine must meet to achieve the optimum coupling. In this manner this work contributes to the development of high performance OWCs.
Keywords: Oscillating water column; Turbine-chamber coupling; Turbine damping; Numerical modelling; RANS–VOF; Mass source function (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (79)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914003638
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:127:y:2014:i:c:p:105-114
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.04.020
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().