A combined effect absorption chiller for enhanced performance of combined cooling heating and power systems
Saliya Jayasekara and
Saman K. Halgamuge
Applied Energy, 2014, vol. 127, issue C, 239-248
Abstract:
Most industrial waste heat (e.g. waste heat from engines) is available as two or more heat sources or in a wider temperature range. Additionally, solar thermal energy has a higher harnessing efficiency at low temperatures while its work potential increases with temperature. However, well-established absorption cooling technologies, such as single and double effect absorption chillers, operate in relatively narrow firing temperature ranges. The use of the maximum temperature range of the sources or of multiple sources together increases the energy harnessing efficiency as well as the productivity of the absorption technology.
Keywords: Combined effect; Diffusion; LiBr–H2O; Absorption cycle; CCHP; Modeling (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914003882
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:127:y:2014:i:c:p:239-248
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.04.035
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().