Heat exchanger network retrofit with a fixed network structure
Ning Jiang,
Jacob David Shelley,
Steve Doyle and
Robin Smith
Applied Energy, 2014, vol. 127, issue C, 25-33
Abstract:
Finding cost effective retrofits for heat exchanger networks remains a challenge. Whilst it is often straightforward to find retrofit changes to an existing network that can improve energy performance, in practice such changes are most often uneconomic. This paper will present an approach to heat exchanger network retrofit around a fixed network structure. Network energy performance is improved through the selective use of heat transfer enhancement. A sensitivity analysis is used to find the most effective heat exchangers to enhance in order to improve the performance of the overall network. The sensitivity analysis used is an extension of a previous sensitivity analysis that was introduced to study network flexibility. The proposed method is applicable for heat exchanger networks involving streams with linear or non-linear physical properties. The enhancement of the most sensitive heat exchangers and avoiding new equipment, together with piping and civil engineering costs, allow much more cost-effective heat exchanger network retrofit.
Keywords: Heat exchanger network; Retrofit; Sensitivity analysis; Heat transfer enhancement (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914003808
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:127:y:2014:i:c:p:25-33
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.04.028
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().