EconPapers    
Economics at your fingertips  
 

A novel data-characteristic-driven modeling methodology for nuclear energy consumption forecasting

Ling Tang, Lean Yu () and Kaijian He

Applied Energy, 2014, vol. 128, issue C, 14 pages

Abstract: Due to the unique features of nuclear energy market, this paper tries to propose a novel data-characteristic-driven modeling methodology based on the principle of “data-characteristic-driven modeling”, aiming at formulating appropriate forecasting model closely in terms of sample data’s own data characteristics. In the novel data-characteristic-driven modeling methodology, two steps are mainly involved, i.e., data analysis and forecasting modeling. First, the sample data of nuclear energy consumption are thoroughly investigated in order to capture the main inner rules and hidden patterns driving the data dynamics, in terms of data characteristics. Second, the corresponding forecasting model is accordingly formulated and designed based on these data characteristics. For illustration and verification purposes, the proposed methodology is implemented to predict the nuclear energy consumption of USA and China. The empirical results demonstrate that the novel methodology with the principle of “data-characteristic-driven modeling” strikingly improves prediction performance, since the models elaborately built based on data characteristics statistically outperform all other benchmark models without consideration of data characteristics. This further confirms that the proposed methodology is a very promising tool in both analyzing and forecasting nuclear energy consumption.

Keywords: Data characteristics; Nuclear energy consumption; Time series forecasting; Data driven modeling (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191400364X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:128:y:2014:i:c:p:1-14

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2014.04.021

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:128:y:2014:i:c:p:1-14