A novel data-characteristic-driven modeling methodology for nuclear energy consumption forecasting
Ling Tang,
Lean Yu () and
Kaijian He
Applied Energy, 2014, vol. 128, issue C, 14 pages
Abstract:
Due to the unique features of nuclear energy market, this paper tries to propose a novel data-characteristic-driven modeling methodology based on the principle of “data-characteristic-driven modeling”, aiming at formulating appropriate forecasting model closely in terms of sample data’s own data characteristics. In the novel data-characteristic-driven modeling methodology, two steps are mainly involved, i.e., data analysis and forecasting modeling. First, the sample data of nuclear energy consumption are thoroughly investigated in order to capture the main inner rules and hidden patterns driving the data dynamics, in terms of data characteristics. Second, the corresponding forecasting model is accordingly formulated and designed based on these data characteristics. For illustration and verification purposes, the proposed methodology is implemented to predict the nuclear energy consumption of USA and China. The empirical results demonstrate that the novel methodology with the principle of “data-characteristic-driven modeling” strikingly improves prediction performance, since the models elaborately built based on data characteristics statistically outperform all other benchmark models without consideration of data characteristics. This further confirms that the proposed methodology is a very promising tool in both analyzing and forecasting nuclear energy consumption.
Keywords: Data characteristics; Nuclear energy consumption; Time series forecasting; Data driven modeling (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191400364X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:128:y:2014:i:c:p:1-14
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.04.021
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().