A metric for characterizing the effectiveness of thermal mass in building materials
Robert A. Talyor and
Mark Miner
Applied Energy, 2014, vol. 128, issue C, 156-163
Abstract:
Building energy use represents approximately 25% of the average total global energy consumption (for both residential and commercial buildings). Heating, ventilation, and air conditioning (HVAC) – in most climates – embodies the single largest draw inside our buildings. In many countries around the world a concerted effort is being made towards retrofitting existing buildings to improve energy efficiency. Better windows, insulation, and ducting can make drastic differences in the energy consumption of a building HVAC system. Even with these improvements, HVAC systems are still required to compensate for daily and seasonal temperature swings of the surrounding environment. Thermal mass inside the thermal envelope can help to alleviate these swings. While it is possible to add specialty thermal mass products to buildings for this purpose, commercial uptake of these products is low. Common building interior building materials (e.g. flooring, walls, countertops) are often overlooked as thermal mass products, but herein we propose and analyze non-dimensional metrics for the ‘benefit’ of selected commonly available products. It was found that location-specific variables (climate, electricity price, material price, insolation) can have more than an order of magnitude influence in the calculated metrics for the same building material. Overall, this paper provides guidance on the most significant contributors to indoor thermal mass, and presents a builder- and consumer-friendly metric to inform decisions about which products could best improve the thermal behavior of the structure.
Keywords: Energy efficiency; Thermal mass; Non-dimensional; Metric; Consumer products (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914004140
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:128:y:2014:i:c:p:156-163
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.04.061
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().