EconPapers    
Economics at your fingertips  
 

Batch anaerobic co-digestion of pig manure with dewatered sewage sludge under mesophilic conditions

Wanqin Zhang, Quanyuan Wei, Shubiao Wu, Dandan Qi, Wei Li, Zhuang Zuo and Renjie Dong

Applied Energy, 2014, vol. 128, issue C, 175-183

Abstract: The objective of this study was to investigate the characteristic of anaerobic co-digestion of pig manure (PM) with dewatered sewage sludge (DSS). The batch experiment was conducted under mesophilic (37±1°C) conditions at five different PM/DSS volatile solid (VS) ratios of 1:0, 2:1, 1:1, 1:2, and 0:1. The batch test evaluated the methane potential, methane production rate of the PM co-digestion with DSS at different mixing ratios. The first-order kinetic model and modified Gompertz model were also introduced to predict the methane yield and evaluate the kinetic parameters. The optimum mixing ratio of PM with DSS was 2:1 and the cumulative methane yield (CMY) was 315.8mL/gVSadded, which is greater by 82.4% than that of digesting DSS alone. This result might be due to the positive synergy of PM with DSS, which resulted in an active microbial activity and a higher hydrolytic capacity of DSS. The systems with co-digestion of PM and DSS was demonstrated to be more stable. The modified Gompertz model (R2: 0.976–0.999) showed a better fit to the experimental results and the calculated parameters indicated that the co-digestion of PM with DSS markedly improved the methane production rate and shortened the effective methane production time.

Keywords: Anaerobic co-digestion; Pig manure; Sewage sludge; Kinetic model (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (39)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914004346
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:128:y:2014:i:c:p:175-183

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2014.04.071

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:128:y:2014:i:c:p:175-183