Performance of a-Si thin film PV modules with and without water flow: An experimental validation
Ankita Gaur and
G.N. Tiwari
Applied Energy, 2014, vol. 128, issue C, 184-191
Abstract:
Analytical expressions have been developed to calculate the temperature dependent electrical efficiency (ηm) and the effect of water flow on the performance of a-Si thin film photovoltaic (PV) modules. The calculated results have been validated by experimental investigations on commercially available a-Si thin film PV modules. With water flow on the PV module, ηm is observed to increase, which has been attributed to the dissipation of thermal energy associated with the PV modules due to water flow on it. The effects of mass flow rates of water (m.w) on module to water heat transfer coefficient (hm,w) and ηm have also been calculated. Increment in m.w, increases both the hm,w and ηm. For low m.w of 0.001kg/s, the hm,w and ηm were calculated to be 14.2W/m2K and 7% respectively, whereas for high m.w of 0.85kg/s, the hm,w and ηm were calculated to be 413W/m2K and 7.45% respectively. Daily average electrical efficiencies of a-Si PV module with and without water flow have been found to be 7.36% and 6.85% respectively. Overall thermal efficiency and overall exergy of PV module with water flow have been found to be 22% and 7.33% respectively.
Keywords: a-Si PV modules; Photovoltaic thermal modules; Mass flow rate (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914004334
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:128:y:2014:i:c:p:184-191
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.04.070
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().