EconPapers    
Economics at your fingertips  
 

Experimental investigation of an innovative thermochemical process operating with a hydrate salt and moist air for thermal storage of solar energy: Global performance

Benoit Michel, Nathalie Mazet and Pierre Neveu

Applied Energy, 2014, vol. 129, issue C, 177-186

Abstract: This paper investigates an innovative open thermochemical system dedicated to high density and long term (seasonal) storage purposes. It involves a hydrate/water reactive pair and operates with moist air. This work focuses on the design of and experimentation with a large scale prototype using SrBr2/H2O as a reactive pair (400kg of hydrated salt, 105kWh of storage capacity and a reactor energy density of 203kWh/m3). Promising conclusions have been obtained regarding the feasibility and performance of such a storage process. Hydration specific powers from 0.75 to 2W/kg have been reached for a bed salt energy density of 388kWh/m3. Moreover, two important parameters that control the storage system have been identified and investigated: the equilibrium drop and the mass flow rate of moist air. Both have a strong influence on the reaction kinetics and therefore on the reactor’s thermal power.

Keywords: Thermochemical process; Open sorption process; Solid–gas reaction; Thermal storage; Seasonal storage; Solar energy (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (45)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191400436X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:129:y:2014:i:c:p:177-186

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2014.04.073

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:129:y:2014:i:c:p:177-186