Nitrogen oxide absorption and nitrite/nitrate formation in limestone slurry for WFGD system
Chenghang Zheng,
Changri Xu,
Yongxin Zhang,
Jun Zhang,
Xiang Gao,
Zhongyang Luo and
Kefa Cen
Applied Energy, 2014, vol. 129, issue C, 187-194
Abstract:
Promoting the nitrogen oxide (NOx) absorption step is the major challenge for simultaneous removal of sulfur dioxide (SO2) and NOx in wet flue gas desulfurization. This paper studied NOx absorption and absorption product formation in limestone slurry. The effect of CaCO3 concentration, NOx composition, and SO2 and O2 concentration was investigated. A proposed reaction pathway of NOx absorption and conversion was developed based on the experimental results. NOx absorption is thought to involve two types of absorption pathways, namely, pure NO2 absorption and simultaneous NO and NO2 absorption. A positive correlation was found between CaCO3 concentration and NO2 absorption rate, and the best molar ratio of NO2/NOx in gas stream for NO absorption was 0.5. The main NOx absorption products were NO2− and NO3−. NO2− inhibits further NOx absorption and could be partially decomposed with release of NO, while NO3− has no obvious effect on NOx absorption. Nitrite can also be converted into nitrate through a reaction with dissolved oxygen. Addition of SO2 provides another NOx absorption pathway due to the reaction between S(IV) and NOx, which indicates the feasibility of simultaneously removing SO2 and NOx by wet scrubbing.
Keywords: Nitrogen oxide; Absorption; Nitrite; Nitrate; Limestone; WFGD (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914004826
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:129:y:2014:i:c:p:187-194
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.05.006
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().