Depressurization induced gas production from hydrate deposits with low gas saturation in a pilot-scale hydrate simulator
Bo Li,
Xiao-Sen Li,
Gang Li,
Jing-Chun Feng and
Yi Wang
Applied Energy, 2014, vol. 129, issue C, 274-286
Abstract:
The kinetic behaviors of methane hydrate dissociation under depressurization in porous media are investigated through experimental and numerical simulations. Hydrate samples with low gas saturations (SG⩽0.10) are synthesized in the pilot-scale hydrate simulator (PHS), a novel three-dimensional pressure vessel with effective inner volume of 117.8L. Three experimental runs with different production pressure at the central vertical well have been carried out. The intrinsic dissociation rate constant k0 is fitted to be approximately 4578kg/(m2Pa s) using the experimental data of run 1, and it is used for the kinetic simulation in all the three runs. The whole production process can be divided into two stages: the free gas and mixed gas production (stage I) and the gas production from hydrate dissociation (stage II). Both the experimental and numerical simulation results show that the gas production rate increases with the decrease of the production pressure, while the water extraction rate will rise much higher if the wellbore pressure is dropped extremely low. The free gas saturation is found to be a key factor that affects the overall production behaviors of marine hydrate deposits. In addition, the comparisons of the kinetic and equilibrium models indicate that the kinetic limitations are very small in the PHS. The hydrate dissociation under depressurization in the PHS is mainly controlled by the mass and heat transfer processes.
Keywords: Gas hydrate; Depressurization; Porous media; Numerical simulation; Intrinsic rate (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (67)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914005133
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:129:y:2014:i:c:p:274-286
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.05.018
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().