Efficiency, cost and life cycle CO2 optimization of fuel cell hybrid and plug-in hybrid urban buses
João P. Ribau,
Carla M. Silva and
João M.C. Sousa
Applied Energy, 2014, vol. 129, issue C, 320-335
Abstract:
Fuel cell powered hybrid electric vehicles (FC-HEV) and plug-in hybrid electric vehicles (FC-PHEV) are being addressed by the automotive industry as improved and more sustainable alternative technologies relatively to conventional vehicles. Nevertheless, hybrid propulsion raises new challenges in designing the vehicle powertrain. This study highlights the significance of the driving conditions and the conflict between the optimization of investment cost, efficiency and life cycle impact (LCA) in powertrain design optimization of these kinds of vehicles. A single-objective (minimization of cost, fuel or LCA CO2eq) and multi-objective genetic algorithms (minimization of the couples cost and fuel, cost and LCA CO2eq, fuel and LCA CO2eq), linked with the vehicle simulation software ADVISOR, are used to optimize the design of powertrain components. The main outcomes of the research are as follows. The optimization of LCA CO2eq emissions and cost are conflicting as well as cost and energy use, what can be observed in the Pareto solutions. The fuel and LCA CO2eq emissions optimization are coupled for pure hybrids but not for plug-in hybrid configurations, due to the electricity consumption. Fuel cell buses can reduce the energy consumption by 58%, and emit 67% less LCA CO2eq than the conventional diesel bus, and achieve compensatory payback of 0.620$/km (depending on the hydrogen price). The FC-PHEV configuration shows more potential for achieving higher operation efficiencies, but the FC-HEV shows to have lower life cycle impact and lower cost in general.
Keywords: Cost; Fuel cell bus; Life cycle; Optimization; Plug-in hybrid vehicle; Real driving cycles (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (40)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914005108
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:129:y:2014:i:c:p:320-335
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.05.015
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().