EconPapers    
Economics at your fingertips  
 

Comparison of static and adaptive models for short-term residential natural gas forecasting in Croatia

Primož Potočnik, Božidar Soldo, Goran Šimunović, Tomislav Šarić, Andrej Jeromen and Edvard Govekar

Applied Energy, 2014, vol. 129, issue C, 94-103

Abstract: In this paper the performance of static and adaptive models for short-term natural gas load forecasting has been investigated. The study is based on two sets of data, i.e. natural gas consumption data for an individual model house, and natural gas consumption data for a local distribution company. Various forecasting models including linear models, neural network models, and support vector regression models, were constructed for the one day ahead forecasting of natural gas demand. The models were examined in their static versions, and in adaptive versions. A cross-validation approach was applied in order to estimate the generalization performance of the examined forecasting models. Compared to the static model performance, the results confirmed the significantly improved forecasting performance of adaptive models in the case of the local distribution company, whereas, as was expected, the forecasts made in the case of the individual house were not improved by the adaptive models, due to the stationary regime of the latter’s heating. The results also revealed that nonlinear models do not outperform linear models in terms of generalization performance. In summary, if the relevant inputs are properly selected, adaptive linear models are recommended for applications in daily natural gas consumption forecasting.

Keywords: Short-term natural gas demand; Adaptive forecasting models; Linear forecasting models; Nonlinear forecasting models (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914004656
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:129:y:2014:i:c:p:94-103

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2014.04.102

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:129:y:2014:i:c:p:94-103