Numerical assessment of the thermodynamic performance of thermoelectric cells via two-dimensional modelling
Klaudio S.M. Oliveira,
Rodrigo P. Cardoso and
Christian J.L. Hermes
Applied Energy, 2014, vol. 130, issue C, 280-288
Abstract:
The present paper is aimed at putting forward a two-dimensional model for thermoelectric cells. The energy conservation equation was formulated in order to account for the Fourier (heat) conduction, the Thomson (thermoelectric) effect, and the Joule heating on the temperature distribution. The electric field was also modelled in order to come out with the current and voltage distributions. The governing equations were discretized by means of the finite-volume method, whereas the TDMA algorithm was adopted for solving the sets of linear equations. An explicit solution scheme was employed to address the temperature influence on the thermoelectric effect. The model results have been compared with experimental data, when a satisfactory agreement was achieved for both cooling capacity and COP, with errors within a 10% band. In addition, the model was employed to assess the effects of the thermophysical properties and the couple geometry on the thermodynamic performance of the thermoelectric cell.
Keywords: Thermoelectric cooling; Two-dimensional model; Sensitivity analysis; Finite-volume method (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914005558
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:130:y:2014:i:c:p:280-288
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.05.050
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().