Investigation of the prospect of energy self-sufficiency and technical performance of an integrated PEMFC (proton exchange membrane fuel cell), dairy farm and biogas plant system
Tingting Guan,
Per Alvfors and
Göran Lindbergh
Applied Energy, 2014, vol. 130, issue C, 685-691
Abstract:
A PEMFC fuelled with hydrogen is known for its high efficiency and low local emissions. However, the generation of hydrogen is always a controversial issue for the application of the PEMFC due to the use of fossil fuel and the possible carbon dioxide emissions. Presently, the PEMFC-CHP fed with renewable fuels, such as biogas, appears to be the most attractive energy converter–fuel combination. In this paper, an integrated PEMFC-CHP, a dairy farm and a biogas plant are studied. A PEMFC-CHP fed with reformate gas from the biogas plant generates electricity and heat to a dairy farm and a biogas plant, while the dairy farm delivers wet manure to the biogas plant as the feedstock for biogas production. This integrated system has been modelled for steady-state conditions by using Aspen Plus®. The results indicate that the wet manure production of a dairy farm with 300 milked cows can support a biogas plant to give 1280MWh of biogas annually. Based on the biogas production, a PEMFC-CHP with a stack having an electrical efficiency of 40% generates 360MWh electricity and 680MWh heat per year, which is enough to cover the energy demand of the whole system while the total efficiency of the PEMFC-CHP system is 82%. The integrated PEMFC-CHP, dairy farm and biogas plant could make the dairy farm and the biogas plant self-sufficient in a sustainable way provided the PEMFC-CHP has the electrical efficiency stated above. The effect of the methane conversion rate and the biogas composition on the system performance is discussed. Moreover, compared with the coal-fired CHP plant, the potentially avoided fossil fuel consumption and CO2 emissions of this self-sufficient system are also calculated.
Keywords: PEMFC-CHP; Biogas; Biogas plant; Dairy farm; Integration (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914003961
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:130:y:2014:i:c:p:685-691
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.04.043
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().