EconPapers    
Economics at your fingertips  
 

Ultrahigh specific surface area of graphene for eliminating subcooling of water

Xing Li, Ying Chen, Zhengdong Cheng, Lisi Jia, Songping Mo and Zhuowei Liu

Applied Energy, 2014, vol. 130, issue C, 824-829

Abstract: Graphene is widely utilized because of its exceptional properties, such as strong mechanical strength, low weight, nearly optical transparency, and excellent conductivity of heat and electricity. In this study, we used the ultrahigh specific surface area of graphene due to its inherently two-dimensional nature to reduce the subcooling of freezing of a phase change material. The results enable graphene’s application in energy storage using the latent heat of phase transition. The need for subcooling to freeze water was eliminated completely with the suspension of a very low mass fraction (0.020±0.001wt%) or surface area concentration (0.070±0.003m2/ml) of graphene. Compared to nanoparticles of SiO2 and TiO2 with the same mass fraction suspended in water, flakes of graphene led to freeze water at a much smaller subcooling degree, and shorter total freezing time. The addition of surfactants can improve suspension stability and further reduce the degree of subcooling, but it also slightly increases the total freezing time. Graphene flakes are more suitable than spherical oxide nanoparticles for use as nucleating additives in water.

Keywords: Aqueous graphene nanofluids; Subcooling degree; Specific surface area; Freezing characteristic; Phase change materials (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914001688
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:130:y:2014:i:c:p:824-829

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2014.02.032

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:130:y:2014:i:c:p:824-829