Effects of the thick walled pipes with convective boundaries on laminar flow heat transfer
Adekunle O. Adelaja,
Jaco Dirker and
Josua P. Meyer
Applied Energy, 2014, vol. 130, issue C, 838-845
Abstract:
Conjugate heat transfer in laminar tube flow with convective boundary conditions is considered analytically. The steady state problem involving two-dimensional wall and axial fluid conduction is solved using separation of variables for a thick walled cylindrical pipe. The effects of the wall thickness, external Biot number and wall-to-fluid thermal conductivity ratio are investigated on the heat flux, fluid bulk and wall temperatures. Results are presented for the cases when the wall thickness is between 0.1 and 2, Biot number ranging between 0.1 and 10, and the ratio of wall-to-fluid thermal conductivity between 3 and 100. These parameters are found to significantly affect the heat transfer characteristics at the thermal entrance region, for instance, increase in wall thickness results in reduced heat flux while increase in Biot number and the ratio of the wall-to-fluid thermal conductivity result in increased heat flux. Decrease in wall thickness, increase in both Biot number and the ratio of the wall-to-fluid thermal conductivity correspond to decreased fluid bulk and wall temperature profiles.
Keywords: Thick-walled pipe; Biot number; Peclet number; Wall-to-fluid thermal conductivity ratio; Convective heat transfer (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914001019
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:130:y:2014:i:c:p:838-845
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.01.072
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().