Forecasting household consumer electricity load profiles with a combined physical and behavioral approach
C. Sandels,
J. Widén and
L. Nordström
Applied Energy, 2014, vol. 131, issue C, 267-278
Abstract:
In this paper, a simulation model that forecasts electricity load profiles for a population of Swedish households living in detached houses is presented. The model is constructed of three separate modules, namely appliance usage, Domestic Hot Water (DHW) consumption and space heating. The appliance and DHW modules are based on non-homogenous Markov chains, where household members move between different states with certain probabilities over the days. The behavior of individuals is linked to various energy demanding activities at home. The space heating module is built on thermodynamical aspects of the buildings, weather dynamics, and the heat loss output from the aforementioned modules. Subsequently, a use case for a neighborhood of detached houses in Sweden is simulated using a Monte Carlo approach. For the use case, a number of justified assumptions and parameter estimations are made. The simulations results for the Swedish use case show that the model can produce realistic power demand profiles. The simulated profile coincides especially well with the measured consumption during the summer time, which confirms that the appliance and DHW modules are reliable. The deviations increase for some periods in the winter period due to, e.g. unforeseen end-user behavior during occasions of extreme electricity prices.
Keywords: Markov-chain models; Domestic electricity demand; Detached house architecture; Stochastic; Holistic (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (30)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914006308
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:131:y:2014:i:c:p:267-278
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.06.048
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().