EconPapers    
Economics at your fingertips  
 

Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment

Peitao Zhao, Yafei Shen, Shifu Ge, Zhenqian Chen and Kunio Yoshikawa

Applied Energy, 2014, vol. 131, issue C, 345-367

Abstract: Our society currently faces three challenges, including resource depletion, waste accumulation and environmental degradation, leading to rapidly escalating raw material costs and increasingly expensive and restrictive waste disposal legislation. This work aims to produce clean solid biofuel from high moisture content waste biomass (bio-waste) with high nitrogen (N)/chlorine (Cl) content by mild hydrothermal (HT) conversion processes. The newest results are summarized and discussed in terms of the mechanical dewatering and upgrading, dechlorination, denitrification and coalification resulting from the HT pretreatment. Moreover, both the mono-combustion and co-combustion characteristics of the solid fuel are reviewed by concentrating on the pollutants emission control, especially the NO emission properties. In addition, the feasibility of this HT solid biofuel production process is also discussed in terms of “Energy Balance and economic viability”. As an alternative to dry combustion/dry pyrolysis/co-combustion, the HT process, combining the dehydration and decarboxylation of a biomass to raise its carbon content aiming to achieve a higher calorific value, opens up the field of potential feedstock for lignite-like solid biofuel production from a wide range of nontraditional renewable and plentiful wet agricultural residues, sludge and municipal wastes. It would contribute to a wider application of HT pretreatment bio-wastes for safe disposal and energy recycling.

Keywords: Hydrothermal treatment; Waste biomass utilization; Coalification; Denitrogenation; Dechlorination (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (55)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914006205
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:131:y:2014:i:c:p:345-367

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2014.06.038

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:131:y:2014:i:c:p:345-367