Dynamic modeling of Shell entrained flow gasifier in an integrated gasification combined cycle process
Hyeon-Hui Lee,
Jae-Chul Lee,
Yong-Jin Joo,
Min Oh and
Chang-Ha Lee
Applied Energy, 2014, vol. 131, issue C, 425-440
Abstract:
The Shell coal gasification system is a single-stage, up-flow, oxygen-blown gasifier which utilizes dry pulverized coal with an entrained flow mechanism. Moreover, it has a membrane wall structure and operates in the slagging mode. This work provides a detailed dynamic model of the 300MW Shell gasifier developed for use as part of an overall IGCC (integrated gasification combined cycle) process simulation. The model consists of several sub-models, such as a volatilization zone, reaction zone, quench zone, slag zone, and membrane wall zone, including heat transfers between the wall layers and steam generation. The dynamic results were illustrated and the validation of the gasifier model was confirmed by comparing the results in the steady state with the reference data. The product gases (H2 and CO) began to come out from the exit of the reaction zone within 0.5s, and nucleate boiling heat transfer was dominant in the water zone of the membrane wall due to high heat fluxes. The steady state of the process was reached at nearly t=500s, and our simulation data for the steady state, such as the temperature and composition of the syngas, the cold gas efficiency (81.82%), and carbon conversion (near 1.0) were in good agreement with the reference data.
Keywords: Shell gasifier; Entrained flow gasifier; Dynamic modeling; IGCC (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914006266
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:131:y:2014:i:c:p:425-440
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.06.044
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().