Economic analysis of using excess renewable electricity to displace heating fuels
Alessandro Pensini,
Claus N. Rasmussen and
Willett Kempton
Applied Energy, 2014, vol. 131, issue C, 530-543
Abstract:
Recent work has shown that for high-penetration renewable electricity systems, it is less expensive to install higher capacity of renewables and to allow generation to exceed load during some hours, rather than to build so much storage that all electricity can be used to meet electrical load. Because excess electricity appears to be cost-optimum, this raises the question as to whether the excess electricity, which in the case of wind power is predominately produced in colder weather, might displace other fuels for purposes such as heat. This study models using excess electricity for heating, based on an analysis of electricity and heat use in a TSO in the North-Eastern part of the United States (PJM Interconnection). The heating system was modeled as heat pump based district heating (HPDH) with thermal energy storage (TES). Thus, excess electricity is transformed into heat, which is easy and cheap to store near the point of use. As an alternative to HPDH, the use of distributed electrical resistive heating coupled with high temperature thermal storage (HTS) was also assessed. In both cases, a natural gas fired boiler (NGB) was modeled to be installed in the building for back-up heat. An algorithm that calculates the total cost of a unit of heat was used to determine the economically optimal size of the system’s main components and the influence that natural gas (NG) and electricity prices have on this optimum. It was found that a system based on heat pumps (HP) and centralized thermal storage supplies building heat at a lower or similar cost than conventional systems. In most cases electric resistive heating with HTS was found to be less cost-effective than HPDH. The consumption of natural gas can be reduced to as little as 3% of that used by an entirely NG-based heater. Also, thermal energy storage was found to be crucial when it comes to reducing the need for fossil fuels for heating (in this model, as backup heat).
Keywords: Renewable energy; Energy storage; Excess electricity; Heat pump; Space heating; District heating (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (35)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914004772
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:131:y:2014:i:c:p:530-543
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.04.111
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().