EconPapers    
Economics at your fingertips  
 

Inter-annual and inter-seasonal variability of the Orkney wave power resource

Simon P. Neill, Matt J. Lewis, M. Reza Hashemi, Emma Slater, John Lawrence and Steven A. Spall

Applied Energy, 2014, vol. 132, issue C, 339-348

Abstract: The waters surrounding the Orkney archipelago in the north of Scotland are one of the key regions in the world suitable for exploitation of both wave and tidal energy resources. Accordingly, Orkney waters are currently host to 1.08GW of UK Crown Estate leased wave and tidal energy projects, with a further 0.5GW leased in the southern part of the adjacent Pentland Firth. Although several wave resource models exist of the region, most of these models are commercial, and hence the results not publicly available, or have insufficient spatial/temporal resolution to accurately quantify the wave power resource of the region. In particular, no study has satisfactorily resolved the inter-annual and inter-seasonal variability of the wave resource around Orkney. Here, the SWAN wave model was run at high resolution on a high performance computing system, quantifying the Orkney wave power resource over a ten year period (2003–2012), a decade which witnessed considerable inter-annual variability in the wave climate. The results of the validated wave model demonstrate that there is considerable variability of the wave resource surrounding Orkney, with an extended winter (December–January–February–March, DJFM) mean wave power ranging from 10 to 25kW/m over the decade of our study. Further, the results demonstrate that there is considerably less uncertainty (30%) in the high energy region to the west of Orkney during winter months, in contrast to much greater uncertainty (60%) in the lower energy region to the east of Orkney. The DJFM wave resource to the west of Orkney correlated well with the DJFM North Atlantic Oscillation (NAO). Although a longer simulated time period would be required to fully resolve inter-decadal variability, these preliminary results demonstrate that due to considerable inter-annual variability in the NAO, it is important to carefully consider the time period used to quantify the wave power resource of Orkney, or regions with similar exposure to the North Atlantic. Finally, our study reveals that there is significantly less variability in the practical wave power resource, since much of the variability in the theoretical resource is contained within relatively few extreme events, when a wave device enters survival mode.

Keywords: Wave power; Wave resource; SWAN wave model; Inter-annual variability; North Atlantic Oscillation; Orkney (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (42)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914007041
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:132:y:2014:i:c:p:339-348

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2014.07.023

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:132:y:2014:i:c:p:339-348