Thermal 3D model for Direct Solar Steam Generation under superheated conditions
J.J. Serrano-Aguilera,
L. Valenzuela and
L. Parras
Applied Energy, 2014, vol. 132, issue C, 370-382
Abstract:
Parabolic-trough collectors (PTC) solar systems are one of the most promising of a wide range of the available solar technologies. Continuous breakthroughs are being achieved. Mainly due to the considerable amount of solar PTC plants that are being under operation in different countries. Within this continuous improvement effort, Direct Steam Generation (DSG) has been under development. DSG will lead to cheaper systems, not only for electricity generation but for heat process requirements. Working with superheated steam as thermal fluid, implies thicker pipe walls. Current numerical models neglect the radial dimension. In this context, simulating DSG absorbers implies considering radial domain discretization. A single phase model has been developed in order to work the 3D temperature field out on the solid parts, including the glass cover. Vacuum annulus has been assumed between stainless steel absorber and the glass envelope. The thermal radiative interaction between those parts has been considered without constant temperature assumption over the glass envelope. Finally, unidimensional approximation has been applied to the fluid domain. The whole code has been developed from the elemental (PDEs) governing equations and has been implemented in Matlab®. The numerical model has been validated from experimental results. These results have been gathered from an experimental DSG test facility with parabolic-troughs.
Keywords: Heat transfer analysis; Numerical simulation; 3D thermal model; Direct steam generation; Parabolic trough collector; Linear solar receiver (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191400717X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:132:y:2014:i:c:p:370-382
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.07.035
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().