Conceptual demonstration of novel closed-loop pressure retarded osmosis process for sustainable osmotic energy generation
Gang Han,
Qingchun Ge and
Tai-Shung Chung
Applied Energy, 2014, vol. 132, issue C, 383-393
Abstract:
For the first time, one novel closed-loop pressure retarded osmosis (PRO) process promoted by an effective hydroacid complex draw solution has been demonstrated for harvesting the renewable salinity-gradient energy. The complex draw solute was molecularly constructed to possess unique characteristics of high osmotic pressure, large molecular size and relative low viscosity, and easy regeneration. Compared to conventional PRO processes, the newly developed closed-loop PRO process exhibits promising advantages of sustainable high power output, negligible internal concentration polarization and low membrane fouling, as well as no problems of feed water pretreatment and brackish water discharge. Employing a highly permeable (A=4.30 LMH/bar) and selective (B=0.47 LMH) thin film composite PRO hollow fiber membrane, a power density of 16.2W/m2 can be achieved with an ultralow reverse solute flux (Js/Jw<0.062gL−1) at 12bar when using 1M complex draw solution and deionized water as feeds. The diluted complex draw solution can be regenerated via a solvent precipitation process, and the outstanding PRO performance could be almost fully recovered. We believe the newly developed closed-loop PRO process shows great potential for salinity-gradient energy capture, although the specific benefits have to be fully defined through energy or cost analysis.
Keywords: Closed-loop PRO; Renewable osmotic energy; Hydroacid complex draw solute; Hollow fiber membrane (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914007107
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:132:y:2014:i:c:p:383-393
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.07.029
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().