A thermo- and toxin-tolerant kefir yeast for biorefinery and biofuel production
Jui-Jen Chang,
Cheng-Yu Ho,
Chi-Tang Mao,
Nathan Barham,
Yu-Rong Huang,
Feng-Ju Ho,
Yueh-Chin Wu,
Yu-Han Hou,
Ming-Che Shih,
Wen-Hsiung Li and
Chieh-Chen Huang
Applied Energy, 2014, vol. 132, issue C, 465-474
Abstract:
Although biorefinery has become a common concept to convert biomass into biofuels and value-added chemicals for better cost-performance, good microbial hosts that can be used to implement the concept are still wanting. In this study, a Kluyveromyces marxianus yeast, named KY3, was isolated from a Taiwanese kefir microbial consortium. We showed that KY3 could grow on a broad spectrum of substrates, including hexose and pentose sugars. It is heat and toxin tolerant, can grow under a wide range of pH values (pH 2.5–9), and shows a high ethanol production rate at elevated temperatures. It also can produce value-added aromatic chemicals, such as 2-phenylethylethanol and 2-phenylethyl acetate, during the fermentative process. A genetic transformation was achieved in KY3 to express a rumen fungal β-glucosidase gene, and the transgenic host (KY3–NpaBGS) could efficiently convert cellobiose to ethanol. Furthermore, it was shown that a novel dual-microbe co-culture system of Bacillus subtilis and KY3–NpaBGS can be employed for bioethanol production from cellulosic material. Thus, KY3 has a high potential to be a good host for biorefinery.
Keywords: Biorefinery; Kefir yeast; Kluyveromyces marxianus; Dual-microbe co-culture; Cellulosic ethanol (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914006667
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:132:y:2014:i:c:p:465-474
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.06.081
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().