EconPapers    
Economics at your fingertips  
 

A thermo- and toxin-tolerant kefir yeast for biorefinery and biofuel production

Jui-Jen Chang, Cheng-Yu Ho, Chi-Tang Mao, Nathan Barham, Yu-Rong Huang, Feng-Ju Ho, Yueh-Chin Wu, Yu-Han Hou, Ming-Che Shih, Wen-Hsiung Li and Chieh-Chen Huang

Applied Energy, 2014, vol. 132, issue C, 465-474

Abstract: Although biorefinery has become a common concept to convert biomass into biofuels and value-added chemicals for better cost-performance, good microbial hosts that can be used to implement the concept are still wanting. In this study, a Kluyveromyces marxianus yeast, named KY3, was isolated from a Taiwanese kefir microbial consortium. We showed that KY3 could grow on a broad spectrum of substrates, including hexose and pentose sugars. It is heat and toxin tolerant, can grow under a wide range of pH values (pH 2.5–9), and shows a high ethanol production rate at elevated temperatures. It also can produce value-added aromatic chemicals, such as 2-phenylethylethanol and 2-phenylethyl acetate, during the fermentative process. A genetic transformation was achieved in KY3 to express a rumen fungal β-glucosidase gene, and the transgenic host (KY3–NpaBGS) could efficiently convert cellobiose to ethanol. Furthermore, it was shown that a novel dual-microbe co-culture system of Bacillus subtilis and KY3–NpaBGS can be employed for bioethanol production from cellulosic material. Thus, KY3 has a high potential to be a good host for biorefinery.

Keywords: Biorefinery; Kefir yeast; Kluyveromyces marxianus; Dual-microbe co-culture; Cellulosic ethanol (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914006667
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:132:y:2014:i:c:p:465-474

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2014.06.081

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:132:y:2014:i:c:p:465-474