Optimization of filler distribution for organic phase change material composites: Numerical investigation and entropy analysis
Yejun Zhu,
Baoling Huang and
Jingshen Wu
Applied Energy, 2014, vol. 132, issue C, 543-550
Abstract:
Organic phase change materials have been attracting great attentions for their promising potential in thermal energy storage applications. Due to their poor thermal conductivity and thermal diffusivity, thermally conductive fillers are often added to form composites to enhance the thermal performance. To achieve the optimized performance without sacrificing the thermal capacity, a novel numerical methodology has been developed to model the thermal behavior of phase change material composites, which has been validated by the experimental results for pure n-octadecane and n-octadecane/expanded graphite composites. Effects of different filler concentration distributions have been analyzed and compared. It is found that the phase change time is significantly affected by the filler distribution. An optimal polynomial filler distribution can reduce the phase change time by more than 50% with the same filling content, compared with the uniform distribution. Entropy analysis indicates that a shorter phase change time is correlated with a lower entropy generation rate.
Keywords: Phase change materials; Composite; Finite difference method; Entropy; Optimization (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914006400
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:132:y:2014:i:c:p:543-550
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.06.058
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().