Two-phase plate-fin heat exchanger modeling for waste heat recovery systems in diesel engines
Emanuel Feru,
Bram de Jager,
Frank Willems and
Maarten Steinbuch
Applied Energy, 2014, vol. 133, issue C, 183-196
Abstract:
This paper presents the modeling and model validation for a modular two-phase heat exchanger that recovers energy in heavy-duty diesel engines. The model is developed for temperature and vapor quality prediction and for control design of the waste heat recovery system. In the studied waste heat recovery system, energy is recovered from both the exhaust gas recirculation line and the main exhaust line. Due to the similar design of these two heat exchangers, only the exhaust gas recirculation heat exchanger model is presented in this paper. Based on mass and energy conservation principles, the model describes the dynamics of two-phase fluid flow. Compared to other studies, the model is able to capture multiple phase transitions along the fluid flow by combining finite difference approach with moving boundary approaches. The developed model has low computational complexity, which makes it suitable for control design and real-time implementation.
Keywords: Waste heat recovery; Rankine Cycle; Heat exchanger; Diesel engine; Dynamic model (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914007569
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:133:y:2014:i:c:p:183-196
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.07.073
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().