Predicting winning and losing businesses when changing electricity tariffs
Ramon Granell,
Colin J. Axon and
David C.H. Wallom
Applied Energy, 2014, vol. 133, issue C, 298-307
Abstract:
By using smart meters, more data about how businesses use energy is becoming available to energy retailers (providers). This is enabling innovation in the structure and type of tariffs on offer in the energy market. We have applied Artificial Neural Networks, Support Vector Machines, and Naive Bayesian Classifiers to a data set of the electrical power use by 12,000 businesses (in 44 sectors) to investigate predicting which businesses will gain or lose by switching between tariffs (a two-classes problem). We have used only three features of each company: their business sector, load profile category, and mean power use. We are particularly interested in the switch between a static tariff (fixed price or time-of-use) and a dynamic tariff (half-hourly pricing). We have extended the two-classes problem to include a price elasticity factor (a three-classes problem). We show how the classification error for the two- and three-classes problems varies with the amount of available data. Furthermore, we used Ordinary Least Squares and Support Vector Regression models to compute the exact values of the amount gained or lost by a business if it switched tariff types. Our analysis suggests that the machine learning classifiers required less data to reach useful performance levels than the regression models.
Keywords: Energy; Tariff switching; Classification; Neural Networks; Support Vector Machines; Regression models (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914007892
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:133:y:2014:i:c:p:298-307
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.07.098
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().