Broadband tristable energy harvester: Modeling and experiment verification
Shengxi Zhou,
Junyi Cao,
Daniel J. Inman,
Jing Lin,
Shengsheng Liu and
Zezhou Wang
Applied Energy, 2014, vol. 133, issue C, 33-39
Abstract:
This paper proposes the theoretical model and experimental investigations of a broadband piezoelectric based vibration energy harvester with a triple-well potential induced by a magnetic field. The mathematical model is derived from the energy method to describe the response characteristics of nonlinear tristable energy generators. The parameters of the linear energy harvesting system without magnetic force actuation are obtained through intelligent optimization of the minimum error between numerical simulations and experimental responses. The equivalent nonlinear restoring force of the tristable oscillator is experimentally identified as a high order polynomial. Numerical simulations and experiments are performed at different harmonic excitation levels ranging from 1 to 20Hz. The results verify that the identified electromechanical model can describe the dynamic characteristics of broadband tristable energy harvesters. Furthermore, in comparison to bistable nonlinear energy oscillators with deeper potential well, the tristable arrangement passes easily through potential wells for generating higher energy output over a wider range of frequency.
Keywords: Piezoelectric energy harvesting; Nonlinear vibrations; Tristable; Bistable; Model identification (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (80)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914007600
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:133:y:2014:i:c:p:33-39
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.07.077
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().