Modelling demand response aggregator behavior in wind power offering strategies
Nadali Mahmoudi,
Tapan K. Saha and
Mehdi Eghbal
Applied Energy, 2014, vol. 133, issue C, 347-355
Abstract:
This paper proposes a new wind offering strategy in which a wind power producer employs demand response (DR) to cope with the power production uncertainty and market violations. To this end, the wind power producer sets demand response (DR) contracts with a DR aggregator. The DR aggregator behavior is modeled through a revenue function. In this way the aggregator aims to maximize its revenue through trading DR with the wind power producer, other market players and the day-ahead market. The problem is formulated in bilevel programming in which the upper level represents wind power producer decisions and the lower level models the DR aggregator behavior. The given bilevel problem is then transformed into a single-level mathematical program with equilibrium constraints (MPEC) and linearized using proper techniques. The feasibility of the given strategy is assessed on a case of the Nordic market.
Keywords: Bilevel programming; Demand response; DR aggregator behavior; MPEC; Stochastic programming; Wind offering strategy (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914007995
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:133:y:2014:i:c:p:347-355
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.07.108
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().