EconPapers    
Economics at your fingertips  
 

Self-adaptable hierarchical clustering analysis and differential evolution for optimal integration of renewable distributed generation

Rodrigo Mena, Martin Hennebel, Yan-Fu Li and Enrico Zio

Applied Energy, 2014, vol. 133, issue C, 388-402

Abstract: In a previous paper, we have introduced a simulation and optimization framework for the integration of renewable generators into an electrical distribution network. The framework searches for the optimal size and location of the distributed renewable generation units (DG). Uncertainties in renewable resources availability, components failure and repair events, loads and grid power supply are incorporated. A Monte Carlo simulation–optimal power flow (MCS–OPF) computational model is used to generate scenarios of the uncertain variables and evaluate the network electric performance with respect to the expected value of the global cost (ECG). The framework is quite general and complete, but at the expenses of large computational times for the analysis of real systems. In this respect, the work of the present paper addresses the issue and introduces a purposely tailored, original technique for reducing the computational efforts of the analysis. The originality of the proposed approach lies in the development of a new search engine for performing the minimization of the ECG, which embeds hierarchical clustering analysis (HCA) within a differential evolution (DE) search scheme to identify groups of similar individuals in the DE population and, then, ECG is calculated for selected representative individuals of the groups only, thus reducing the number of objective function evaluations. For exemplification, the framework is applied to a distribution network derived from the IEEE 13 nodes test feeder. The results show that the newly proposed hierarchical clustering differential evolution (HCDE) MCS–OPF framework is effective in finding optimal DG-integrated network configurations with reduced computational efforts.

Keywords: Distributed renewable generation; Uncertainty; Simulation; Optimization; Differential evolution; Hierarchical clustering analysis (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914007697
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:133:y:2014:i:c:p:388-402

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2014.07.086

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:133:y:2014:i:c:p:388-402