Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies
Tao Wang,
K.J. Tseng,
Jiyun Zhao and
Zhongbao Wei
Applied Energy, 2014, vol. 134, issue C, 229-238
Abstract:
Thermal management needs to be carefully considered in the lithium-ion battery module design to guarantee the temperature of batteries in operation within a narrow optimal range. This article firstly explores the thermal performance of battery module under different cell arrangement structures, which includes: 1×24, 3×8 and 5×5 arrays rectangular arrangement, 19 cells hexagonal arrangement and 28 cells circular arrangement. In addition, air-cooling strategies are also investigated by installing the fans in the different locations of the battery module to improve the temperature uniformity. Factors that influence the cooling capability of forced air cooling are discussed based on the simulations. The three-dimensional computational fluid dynamics (CFD) method and lumped model of single cell have been applied in the simulation. The temperature distributions of batteries are quantitatively described based on different module patterns, fan locations as well as inter-cell distance, and the conclusions are arrived as follows: when the fan locates on top of the module, the best cooling performance is achieved; the most desired structure with forced air cooling is cubic arrangement concerning the cooling effect and cost, while hexagonal structure is optimal when focus on the space utilization of battery module. Besides, the optimized inter-cell distance in battery module structure has been recommended.
Keywords: Battery thermal management; Computational fluid dynamics modeling; Battery module structure; Air cooling strategy; Inter-cell spacing (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (74)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914008162
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:134:y:2014:i:c:p:229-238
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.08.013
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().