Reducing a semiarid city’s peak electrical demand using distributed cold thermal energy storage
Benjamin L. Ruddell,
Francisco Salamanca and
Alex Mahalov
Applied Energy, 2014, vol. 134, issue C, 35-44
Abstract:
Several changes to the world’s electrical power systems and grids threaten to require massive infrastructure investment and cost to power utilities, especially increasing population and electrical energy demands, especially peak summertime air conditioning demands, and mismatches between timing of supply and demand due to increases in renewable energy and/or large demands from new technologies. Existing power grid systems are generally under-utilized with low load factors during most times of day and year, but demand strains capacity during peak hours. Brownouts and other grid failures are projected to become more common as peak demands approach grid capacities, with negative economic and public health consequences resulting. Meanwhile a financial barrier exists for the financing of grid improvements, because utility revenues are proportional to total power sales, whereas utility costs are driven largely by capital and maintenance for the fixed infrastructure.
Keywords: Thermal energy storage; Load shifting; Power grid; Air conditioning; Peak demand; Heat wave (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914007879
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:134:y:2014:i:c:p:35-44
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.07.096
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().