EconPapers    
Economics at your fingertips  
 

Economic-emission dispatch problem: A semi-definite programming approach

A.M. Jubril, O.A. Olaniyan, O.A. Komolafe and P.O. Ogunbona

Applied Energy, 2014, vol. 134, issue C, 446-455

Abstract: A semi-definite programming (SDP) formulation of the multi-objective economic-emission dispatch problem is presented. The fuel cost and emission functions are represented by high order polynomial functions and this was shown to be a more accurate representation of the economic-emission dispatch (EED) problem. Furthermore, the polynomial functions of both objective functions are aggregated into a single objective function using the weighted sum approach. This thus reduces the problem to a standard polynomial optimization problem which was formulated as a hierarchy of semi-definite relaxation problems. The resulting SDP problem was then solved at different degrees of approximation. The performance of the proposed approach was evaluated by conducting experiments on the standard 6-unit and the 13-unit IEEE test systems. The results obtained were compared with those reported in the literature and indicated that SDP has inherently good convergence property and provides better exploration of the Pareto front.

Keywords: Multi-objective optimization; Polynomial optimization; Economic dispatch; Emission dispatch; Semidefinite programming; Weighted sum method (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914008277
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:134:y:2014:i:c:p:446-455

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2014.08.024

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:134:y:2014:i:c:p:446-455