A simple, scalable and low-cost method to generate thermal diagnostics of a domestic building
Anastasios Papafragkou,
Siddhartha Ghosh,
Patrick A.B. James,
Alex Rogers and
AbuBakr S. Bahaj
Applied Energy, 2014, vol. 134, issue C, 519-530
Abstract:
Traditional approaches to understand the problem of the energy performance in the domestic sector include on-site surveys by energy assessors and the installation of complex home energy monitoring systems. The time and money that needs to be invested by the occupants and the form of feedback generated by these approaches often makes them unattractive to householders. This paper demonstrates a simple, low cost method that generates thermal diagnostics for dwellings, measuring only one field dataset; internal temperature over a period of 1week. A thermal model, which is essentially a learning algorithm, generates a set of thermal diagnostics about the primary heating system, the occupants’ preferences and the impact of certain interventions, such as lowering the thermostat set-point. A simple clustering approach is also proposed to categorise homes according to their building fabric thermal performance and occupants’ energy efficiency with respect to ventilation. The advantage of this clustering approach is that the occupants receive tailored advice on certain actions that if taken will improve the overall thermal performance of a dwelling. Due to the method’s low cost and simplicity it could facilitate government initiatives, such as the ‘Green Deal’ in the UK.
Keywords: Domestic heating; Thermal modelling; Heating and ventilation; Occupant preferences; Energy feedback; Building energy performance (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914008484
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:134:y:2014:i:c:p:519-530
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.08.045
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().